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Abstract
Using nonequilibrium Green’s function techniques, we investigate Andreev reflection and
Aharonov–Bohm oscillations through a parallel-coupled double quantum dot connected with a
ferromagnetic lead and a superconductor lead. The possibility of controlling Andreev reflection
and Aharonov–Bohm oscillations of the system is explored by tuning the interdot coupling, the
gate voltage, the magnetic flux, and the intradot spin-flip scattering. When the spin-flip
scattering increases, Fano resonant peaks resulting from the asymmetrical levels of the two
quantum dots begin to split, and Aharonov–Bohm oscillations are suppressed. Due to the
interdot coupling, one strongly and one weakly coupled state of the system can be formed.
The magnetic flux can exchange the function of the two states, which leads to a swap effect.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent advances in nanotechnology have attracted much
attention to the quantum coherence phenomena of resonant
tunneling through quantum dot (QD) systems. To probe
the coherence of an electron through a QD, interference
experiments on the Aharonov–Bohm (AB) effect [1] in an
AB interference with one QD in one of its arms have been
done [2]. At the same time, the Kondo correlations [3–6] and
the Fano effect [7, 8] have been addressed too. More recently,
an AB interferometer containing two quantum dots has
been realized [9–14], such as normal metal/double quantum
dot/normal metal (N/DQD/N) [15], superconductor/double
quantum dot/superconductor (S/DQD/S) [16], and so on.
When the DQD system changes from the series to
the symmetrical parallel configuration, the conductance is
composed of Breit–Wigner and Fano line shapes at the
bonding and antibonding energies, respectively, with their line
broadenings controlled by the asymmetry of the configuration.

On the other hand, the mesoscopic hybrid structures
of ferromagnet (F) and superconductor (S) [17–20] have

some particular characters. Due to the appearance of the
superconducting energy gap �, so-called Andreev reflection
(AR) [21, 22] occurs. In the AR process, an electron incident
with momentum k and spin σ picks up another electron with
momentum −k and spin −σ to form a Cooper pair. It
enters the S region and leaves an Andreev reflected hole in
the F side. Currently, many research activities are being
focused on the hybrid structures of F and S. The AR through
the structure of F/DQ/S has been investigated by Cao et al
[18]. Competition between the intradot spin-flip scattering
and the tunneling coupling to the leads dominates the resonant
behaviors of the Andreev reflection conductance. The spin-
flip process can provide a bottleneck for the energy relaxation
in the QD, i.e. for transitions between the excited and ground
states [23]. A weak spin-flip scattering leads to a single-
peak resonance. However, with increasing spin-flip scattering
strength, the Andreev reflection conductance will develop into
a double-peak resonance, indicating a novel structure in the
conductance tunneling spectrum.

The DQD system is one of the promising candidates for a
quantum bit in quantum computation by controlling the QD
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Figure 1. The model of a parallel-coupled double quantum dot
system connected with an F lead and S lead.

levels [24]. When a parallel-coupled DQD connects to an
F and an S lead, this system threaded by a magnetic flux is
regarded as an AB interferometer; the transport properties,
such as the Andreev conductance and the AB oscillations, can
be controlled by the magnetic flux and the spin-flip scattering.
Motivated by this, in this work, we calculate the spin-
dependent AR through a parallel-coupled DQD system using
nonequilibrium Green’s function (NGF) techniques [25–28].
This parallel-coupled DQD structure is shown in figure 1. It
is found that the AR conductance depends not only on the
interdot coupling and the magnetic flux, but also on the spin-
flip scattering. The interplay of the DQD and the F (S) lead
provides new features in the electronic transport, which might
throw some light on the potential of such structures as quantum
devices.

The rest of this paper is organized as follows. In section 2,
the model and the formulae for the DQD are introduced.
Numerical results and discussions are shown in section 3.
Section 4 consists of a brief conclusion.

2. Model and formulae

Consider a parallel-coupled double quantum dot system as
shown in figure 1. The Hamiltonian of the system can be
written as

H = HF + HS + HDQD + HT, (1)

where HF and HS are the Hamiltonians for the F and the S
leads.

HF =
∑

kσ

(εkσ + σ · h)a†
kσ akσ , (2)

HS =
∑

pσ

εpσ s†
pσ spσ +

∑

p

(�s†
p↓s†

−p↑ + �∗sp↑s−p↓). (3)

Here, akσ (a†
kσ ) denotes the annihilation (creation) operator of

the electron in the F lead with energy εkσ . An internal moment
h is parallel to the F–QD interface. The BCS Hamiltonian is
adopted for the S lead with �, which represents the S energy
gap. spσ (s†

pσ ) denotes the annihilation (creation) operator of
the electron in the S lead with energy εpσ . HDQD models the
parallel-coupled double quantum dot as

HDQD =
∑

iσ

(εiσ − Vgi)d
†
iσ diσ +

∑

σ

(tc eiθd†
1σ d2σ + hc)

+ R
∑

i

(d†
i↑di↓ + hc), (4)

where diσ (d†
iσ ) denotes the annihilation (creation) operator

of the electron with energy εi in the dot i (i = 1, 2), R

is the spin-flip scattering strength, tc denotes the interdot
coupling strength, θ denotes a phase shift related to the flux
difference between the left and the right subrings, and Vgi

(i = 1, 2) represents the gate voltage, respectively. In
this work, we ignore the intradot electron–electron Coulomb
interaction and focus on the interdot coupling and the intradot
spin-flip scattering. When the intradot Coulomb repulsion is
considered, more peak structure develops in the conductance,
with a characteristic Coulomb gap [29]. HT represents the
tunneling coupling between the DQD and leads

HT =
∑

k,σ,i=1,2

(tkσ i a
†
kσ i diσ + hc) +

∑

p,σ,i=1,2

(tpσ i s
†
pσ diσ + hc).

(5)
Here the tunneling matrix elements are set as tkσ1 =
|tkσ1| eiφ/4, tkσ2 = |tkσ2| e−iφ/4, tpσ1 = |tpσ1| e−iφ/4, and
tpσ2 = |tpσ2| eiφ/4. The phase shift due to the total magnetic
flux threading into the AB ring is assumed to be φ = 2π(φR +
φL)/φ0 with the flux quantum φ0 = hc/e, where φR/L is the
magnetic flux threading the right/left subring. The difference
between the two parts of magnetic flux is θ = π(φR − φL)/φ0.
If the ratio of the two magnetic fluxes is n = φR/φL, the
phase associated with the two subrings of the mesoscopic ring
can be expressed as φR = n

n+1φ and φL = 1
n+1φ. The

difference between the two magnetic fluxes can be expressed
as θ = n−1

2(n+1)
φ. In the following calculation, we define the

linewidth matrix as �α
i j = 
ktαi t∗

αi 2πδ(ε − εkα); α represents
L or R.

The electronic current passing through lead F is defined as

IL = e

〈
dNL

dt

〉
= − e

h̄
Re

i=1,3,5,7∑

k

T †
k,ii G

<
k,ii (t, t ′), (6)

with NL = 
kσ a†
kσ akσ . G<

iσ,kσ (t, t ′) = i〈a†
kσ (t ′)diσ (t)〉 is

the lesser Green’s function, which can be calculated with the
retarded Green’s function.

The Fourier transformed retarded Green’s function of the
system can be solved with Dyson’s equation, Gr = Gr

0 +
Gr

0

rGr, in which Gr

0 is the free retarded Green’s function
for an isolated DQD and 
r is the self-energy matrix due to
the tunneling coupling between the DQD and the leads. In the
8 × 8 generalized Nambu-spin space, the free Green’s function
Gr

0(ε) for the isolated DQD system is given by
Gr

0(ε)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε − ε1 + δ 0 R 0
0 ε + ε1 + δ 0 −R
R 0 ε − ε1 + δ 0
0 −R 0 ε + ε1 + δ

tc e−iθ 0 0 0
0 −tc eiθ 0 0
0 0 tc e−iθ 0
0 0 0 −tc eiθ

tc eiθ 0 0 0
0 −tc e−iθ 0 0
0 0 tc eiθ 0
0 0 0 −tc e−iθ

ε − ε2 + δ 0 R 0
0 ε + ε2 + δ 0 −R
R 0 ε − ε2 + δ 0
0 −R 0 ε + ε2 + δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

, (7)
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where δ = i0†. �f is the tunneling coupling matrix between
the DQD and F lead and is written as follows:

�f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1↑ 0 0 0 �↑ eiφ/2

0 �1↓ 0 0 0
0 0 �1↓ 0 0
0 0 0 �1↑ 0

�↑ e−iφ/2 0 0 0 �2↑
0 �↓ eiφ/2 0 0 0
0 0 �↓ e−iφ/2 0 0
0 0 0 �↑ eiφ/2 0

0 0 0
�↓ e−iφ/2 0 0

0 �↓ eiφ/2 0
0 0 �↑ e−iφ/2

0 0 0
�2↓ 0 0
0 �2↓ 0
0 0 �2↑

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Here, we set �↑ = √
�1↑�2↑ and �↓ = √

�1↓�2↓; �iσ

(i = 1, 2, σ = ↑,↓) is the linewidth function describing
the coupling between the dot and the F lead. Under the
wide-bandwidth approximation, the linewidth functions are
independent of the energy. The self-energy from the tunneling
coupling between the DQD and the F lead is 
r

f = −(i/2)�f.
It is useful to introduce the coupling matrix �s between

the DQD and the S lead

�s = ρr
s(w)�s0

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�R
1 −�1 e−iφ/2 0 0

−�1 eiφ/2 �R
1 0 0

0 0 �R
1 −�1 e−iφ/2

0 0 −�1 eiφ/2 �R
1

�R eiφ/2 −�R �
ε

0 0
−�R �

ε
�R e−iφ/2 0 0

0 0 �R eiφ/2 −�R �
ε

0 0 −�R �
ε

�R e−iφ/2

�R e−iφ/2 −�R �
ε

0 0
−�R �

ε
�R eiφ/2 0 0

0 0 �R e−iφ/2 −�R �
ε

0 0 −�R �
ε

�R eiφ/2

�R
2 −�2 eiφ/2 0 0

−�2 e−iφ/2 �R
2 0 0

0 0 �R
2 −�2 eiφ/2

0 0 −�2 e−iφ/2 �R
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Here �s0 = 2πρs0|Tpσ |2 is the tunneling coupling matrix
between the DQD and the S lead; ρs0 in �s0 is the density of
states when the superconductor is in the normal state. �R

i (i =
1, 2) is the linewidth function describing the coupling between

the dot and the S lead. We set �R =
√

�R
1 �R

2 , �i = �R
i

�
ε

(i =
1, 2). ρr

s(w) is the modified dimensionless BCS density of
states,

ρr
s(w) =

⎧
⎪⎪⎨

⎪⎪⎩

|w|√
w2 − �2

|w| > �,

w

i
√

�2 − w2
|w| < �.

(10)

The self-energy from the tunneling coupling between the DQD
and the S lead, 
r

s = − i
2�s. By using the Dyson equation, the

retarded Green function of the system is

Gr(ε) = [Gr
0(ε)

−1 − 
r(ε)]−1, (11)

where 
r(ε) = 
r
f(ε) + 
r

s(ε). Taking the Fourier
transformation, the current formula becomes

JL = e

h

∫
dw[ fl(w − eV ) − fr(w)]

∑

i=1,3,5,7

[Gr�sG
a�f]ii

+ e

h

∫
dw[ fl(w − eV ) − fr(w + eV )]

×
j=2,4,6,8∑

i=1,3,5,7

[Gr�fG
a�f] j i , (12)

where fl(w) and fr(w) are the Fermi-distribution functions
in the left and right leads, respectively. Ga = (Gr)† is the
advanced Green’s function. The first term of JL is the normal
tunneling current which is caused by the single quasiparticle or
quasihole transport. The second term is the AR current. The
normal linear conductance is zero at zero temperature, and the
AR process contributes to the linear electronic transport of the
system. The AR conductance can be calculated as

G A = 2e2

h

j=2,4,6,8∑

i=1,3,5,7

Gr
i j(�fG

a�f) j i . (13)

3. Results and discussion

In this work, we investigate the linear AR conductance at
zero temperature for the F/DQD/S system, in which the Fermi
energy of the two leads and the energy levels of the DQD
are restricted in the range of the energy gap � of the S lead.
The spin polarization in the F lead is defined as p = (�f↑ −
�f↓)/(�f↑ + �f↓), and the spin-averaged coupling strength is
�f0 = (�f↑+�f↓)/2. The energy gap � of the S lead is taken as
the energy unit and the spin polarization is chosen as p = 0.3.

First we discuss the interference effects in the transport
with the symmetric DQD structure. Figure 2 shows the
AR conductance versus Fermi energy with different spin-flip
scattering strengths. In this case, we set ε1 = ε2 = 0.1, �f0 =
�s = 0.1, and tc = 0.0, respectively. The two quantum dots
contribute to two separate channels, which allow the electrons
to tunnel. When the spin-flip scattering is absent, i.e. R = 0.0,
we can see from figure 2 that the AR conductance displays
two Breit–Wigner resonances. With the spin-flip scattering R
increasing, the two resonant peaks shift gradually towards the
Fermi energy ε = 0. These unattached states are overlapped
at R = 0.1, where the AR conductance displays one peak.
Continue to increase R, and the single-peak conductance
develops into a double-peak resonance again. Moreover, as
the spin-flip scattering increases, the amplitudes of the two
resonant peaks decrease and the distance between the two
peaks becomes large. The intradot spin-flip scattering not only
shifts the level position of the DQD, but also changes the spin-
up and spin-down distribution of the density of states for the
split levels. When R > 0.15 we can see from figure 2 that two
new peaks appear beside the main resonances.
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Figure 2. AR conductance as a function of the Fermi energy ε with
different spin-flip scatterings R. tc = 0, ε1 = ε2 = 0.1, and
φ = θ = 0, respectively.

When the two QDs are coupled, the AR conductance with
different values of spin-flip scattering is plotted in figure 3. The
interdot coupling tc = 0.1; the other parameters are the same
as those in figure 2. The minority spin population near the
Fermi energy determines the probability of the pairing. When
R = 0.0, the electron resonant tunneling and the free spin-flip
between the two dots lead to the minority spin population near
the Fermi energy increasing; a perfect AR tunneling process
occurs at ε = 0. If the spin-flip scattering is considered, it
consumes more energy to make the electrons spin flip; the
resonant tunneling and spin-flip of electrons are controlled
between the two dots, then the peak of the AR conductance
decreases gradually. When the spin-flip scattering strength
varies from 0 to 0.05, the two split energies are overlapped
effectively and the AR conductance behaves as a single-peak
resonance. With R increasing, the two split energies are
separated from each other, leaving an almost vanishing spin-
dependent density of states at the Fermi energy, and as a result
the conductance drops quickly to zero at ε = 0. At the
same time, two resonance peaks occur in the AR conductance
because of the resonant broadening of the two spin-coherent
split levels ε = ±R. The half width of the peak for each state
broadens gradually.

When the interdot coupling is very strong, for example
tc = 0.5, the two coupled quantum dot levels are renormalized
and are transformed into the bonding-like and antibonding-
like states of an artificial molecule. In figure 4 we can find
that interference effect is very clear. The intradot spin-flip
scattering shifts the level position of the DQD ε = ε ± tc to
ε = ε ± tc ± R, which results in four resonant peaks in the AR
conductance. The original two resonant peaks shift towards
the Fermi energy, and overlap effectively at R = 0.45. As a
result, a single peak occurs in the AR conductance, with the
maximum value 2e2/h at ε = 0.

In order to show the effect of the interdot coupling on
the quantum interference, we plot the AR conductance versus
the interdot coupling tc with different spin-flip scatterings; the

Figure 3. AR conductance as a function of the Fermi energy ε with
different spin-flip scatterings R. tc = 0.1; other parameters are as
those in figure 2.

Figure 4. AR conductance as a function of the Fermi energy ε with
different spin-flip scatterings R. tc = 0.5; other parameters are as
those in figure 2.

result is shown in figure 5. The AR conductance presents a
resonant peak at tc = 0.1 + R. When R = 0, a perfect AR
tunneling process occurs at tc = 0.1, which is the same as
shown in figure 3. For a weak spin-flip scattering strength
(R < 0.09), the AR conductance displays a single-peak
resonance at tc = 0.1 and its amplitude gradually decreases.
It is worthwhile to notice that the spin-up and spin-down
electrons are now coupled due to the combined effect of the
interdot coupling and the intradot spin-flip scattering. We can
see from the figure that two resonant states appear when the
spin-flip scattering is about 0.09. With the spin-flip scattering
increasing, the resonant tunneling needs a strong interdot
coupling; the AR peaks shift to tc = 0.1 + R.

It is interesting to show that when the quantum dots have
different energy levels, for example ε1 = 0.1, ε2 = −0.3,
with the interdot coupling tc = 0.5, these two asymmetric
quantum dot levels result in the Fano resonant peaks. Figure 6
shows that, without spin-flip scattering, i.e. R = 0, the

4
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Figure 5. AR conductance as a function of the interdot coupling
strength tc, with different spin-flip scatterings R. ε1 = ε2 = 0.1,
ε = 0, and φ = θ = 0.

Figure 6. AR conductance as a function of the Fermi energy ε with
different spin-flip scatterings R. tc = 0.5, ε1 = 0.1, ε2 = −0.3, and
φ = θ = 0, respectively.

AR conductance indicates two Fano resonant peaks at ε =
±[ ε1+ε2

2 + tc]. Considering the spin-flip scattering, the two
Fano peaks are split into four Fano resonances; the positions
of the resonant states are about ε = ±[ ε1+ε2

2 + tc ± R]; the
Breit–Wigner resonance beside the Fano peak becomes weak.
With the spin-flip scattering R increasing, the amplitudes of the
Fano resonances decrease. However, if the spin-flip scattering
is strong enough, for example R = 0.25, between the split
Fano resonance we can find that another two Breit–Wigner
resonances appear.

We now discuss the AB oscillations; the AR conductance
as a function of magnetic flux φ is shown in figure 7. For
simplicity, we set n = φR/φL = 1, ε1 = ε2 = 0.1,
tc = 0.1, and θ = π(φR − φL)/φ0 = 0, respectively. The
oscillation period of the AR conductance versus magnetic flux
is 4π , which agrees well with the period formula 2π(n + 1)

for the N/DQD/S system [30]. When R = 0, the AR
conductance presents a perfect AR process with the maximum

2.0

1.5

1.0

0.5

0.0
-4 -2 0 2 4

Figure 7. AR conductance as a function of the magnetic flux φ with
different spin-flip scatterings R. tc = 0.1, ε1 = 0.1, ε2 = 0.1, Fermi
energy ε = 0, and θ = 0, respectively.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 8. AR conductance as a function of gate voltage Vg. tc = 0.5,
ε1 = ε2 = 0.1, ε = 0, R = 0, θ = π/8, respectively.

value 4e2/h. When spin-flip scattering R increases, the
amplitudes of the AR conductance decrease; at the same time,
AR conductance shows more resonance peaks, which indicate
more complicated electron tunneling. The spin-flip scattering
cannot change the period of the AB oscillations but the phase
of the AR conductance is reversed at φ = −2π, 0, 2π as soon
as R exceeds some critical value. The AB oscillations are
suppressed obviously by the spin-flip scattering.

The total flux φ or the flux difference θ between the left
and right subrings can be used as a new type of swap operation
in the DQD system. Two quantum states can be flipped by
tuning the magnetic flux. To clearly show this swapping effect,
we set the two quantum levels ε1 = 0.1, ε2 = −0.3, and
θ = π/8 (n = 3/5); figure 8 shows the AR conductance
versus the gate voltage Vg. Due to the interdot coupling,
the two quantum dot levels are renormalized, and the AR
conductance shows a strong and a weak peak. When the total
magnetic flux φ is varied from π to −π , the two peaks are

5
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exchanged symmetrically, which indicates that the magnetic
flux swaps the two states of the DQD. This means the bonding-
like and antibonding-like states of the artificial molecule can be
exchanged by adjusting the magnetic flux. This swap effect of
the AR conductance may be used as a quantum bit in quantum
computation [31, 32].

4. Conclusion

In conclusion, we have studied Andreev reflection and AB
oscillations through a parallel-coupled double quantum dot
system in terms of the nonequilibrium Green’s function
method. The AR conductance can be controlled in several
ways, including the interdot coupling, the two quantum dot
levels, the total flux, the flux difference between two subrings,
the spin-flip scattering R and the gate voltage, respectively.
Fano resonant peaks split and AB oscillation is suppressed due
to the effect of the spin-flip scattering. It is also found that the
bonding-like and the antibonding-like states, which result from
the strong interdot coupling, can be swapped by changing the
magnetic flux.
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